Structure of the Asymmetric Diarylfuroxans Obtained by Reaction of *p*-Chloro- with *p*-Methoxy-benzonitrile *N*-oxide

By C. PANATTONI,* D. A. CLEMENTE, and G. BANDOLI

(Gruppo Strutturistica, Istituto Chimica Generale, Via Loredan 4, 35100 Padova, Italy)

and A. BATTAGLIA and A. DONDONI

(Laboratorio del C.N.R. dei Composti del Carbonio contenenti Eteroatomi e loro Applicazioni, Ozzano E., Bologna, Italy)

Summary An equimolar mixture of p-chloro- and p-methoxy-benzonitrile-N-oxide in carbon tetrachloride gives the four possible products, in nearly equal amounts.

SPONTANEOUS dimerization of benzonitrile N-oxides (I) in neutral medium leads to diarylfuroxans (II).¹ The mechanism of this reaction is under investigation.²

Following this research, the reaction of equimolar amounts of p-chlorobenzonitrile N-oxide (Ia) and pmethoxybenzonitrile N-oxide (Ib) in carbon tetrachloride at 40° was studied and analysed for the four possible furoxans, the two dimers (Ar¹ = Ar²) and the two asymmetric derivatives (Ar¹ \neq Ar²).

After the disappearance, as shown by $\nu(C \equiv N)$, of the total amounts of the previously-isolated nitrile-oxides, the crude reaction mixture was chromatographed over silica gel (70—325 mesh, ASTM, Merck) with benzene-light petroleum (1:2) to give three species: 3,4-di-p-chlorophenylfurazan N-oxide (IIa) m.p. 144—145° (144—145°3), 3,4-di-p-methoxyphenylfurazan N-oxide (IIb) m.p. 110—111° (112°4), and a third substance, shown by its spectroscopic characteristics and analytical data to be either asymmetric furoxan (IIc) or (IId), or a mixture of these; the m.p. of the

$$MeO - p - C_{6}H_{4} - C - C_{6}H_{4} - \hat{p} - Cl$$

$$(IIc) \qquad N - O^{N+}O^{-}$$

$$MeO - p - C_{6}H_{4} - C - C_{6}H_{4} - p - Cl$$

$$(IId) = O^{N} - O^{N}$$

third substance was $142-143^{\circ}$ (from ethanol) unchanged by several crystallizations in different solvents. The relative yields of (IIa), (IIb), and (IIc, IId) were respectively 24, 24, and 52% under the outlined reaction conditions, but were substantially different at lower percentages of conversion. The ¹H n.m.r. spectrum (Figure 1) of (IIc, IId) shows the presence of two peaks for the methoxy-group; the separation between the two signals being 0·6 at 56·4 MHz. and 1·2 at 100 MHz. This unambiguously shows the presence of two nonequivalent methoxy-groups and suggests that (IIc, IId) is a mixture of two asymmetric furoxans in one of which the methoxyphenyl group is on the same side of the extra-annular oxygen (IId) and in the second one in the opposite situation (IIc). X-Ray crystal structure analysis of the product confirms this result.

The crystal data for the species $C_{15}H_{11}N_2O_3Cl$ (IIc, IId)

were: monoclinic, $P2_1/a$, a = 12.62(2), b = 10.20(2), c = 12.83(2) Å, $\beta = 122.51(0.10)^{\circ}$, M 303, U = 1393.1 Å³, $D_{\rm m} = 1.42$, $D_{\rm c} = 1.44$ g cm⁻³. The intensities of 1152 independent non-zero reflections (0kl through 9kl) were taken with a multiple-film equi-inclination Weissenberg technique (Cu- K_{α} radiation) and recorded with a Joyce-Loebl microdensitometer. The reciprocal layers were

FIGURE 1. ¹H n.m.r. spectrum at 100 MHz of (IIc, IId) in CDCl₃, with Me₄Si as internal reference. The 395-375 c./sec. region is recorded on an expanded scale.

brought on the same scale using nearly 400 reflections collected with a Siemens diffractometer. Absorption correlations were deemed to be unnecessary ($\mu = 25.4$ cm⁻¹).

FIGURE 2. Projection down the b axis of the mixture (IIc, IId). The dotted circles indicate the overlapping atoms of two different molecules.

The crystal structure was solved by direct methods and confirmed by Fourier synthesis (F_0 and ΔF) and refined by a full matrix least-squares method with individual isotropic temperature factors to R = 0.14. The structure consists of a build-up of the two different types of molecules, statically distributed in a ratio 47% of (IId) to 53% of (IIc). [These values were obtained from the relative weights of O(3) and O(4) in the refinement (Figure 2)].

The individual temperature factors of the atoms O(2), N(1), and N(2) are considerably higher than those of the remaining atoms (ca. 7 against 4 Å⁻²). This is due to some statistical disorder in overlapping of these atoms. The bond lengths of the two benzene rings are normal with mean C-C = 1.40 ± 0.01 Å. The mean of the two extra-annular N-O distances is 1.07 ± 0.05 Å.

These results show that after complete reaction the distribution of the products obtained from benzonitrile *N*-oxides bearing substituents of opposite electronic effect in the phenyl ring is practically equal.

We thank Dr. L. Lunazzi (Istituto di Chimica Organica e di Chimica Industriale, Università di Bologna) for helpful discussion of ¹H n.m.r. spectra and the C.N.R. for the financial support to C.P., D.A.C., and G.B.

(Received, October 10th, 1969; Com. 1536.)

¹ A. Werner and H. Buss, Ber., 1894, 27, 2193; J. V. R. Kaufman and J. P. Picard, Chem. Rev., 1959, 59, 429.

- ² A. Dondoni, A. Mangini, and S. Ghersetti, *Tetrahedron Letters*, 1966, 4489; G. Barbaro, A. Battaglia, and A. Dondoni, *J. Chem. Soc.*, in the press.
- ³ A. Quilico, "Five- and six-membered compounds with Nitrogen and Oxygen," ed. R. H. Wiley, Interscience, New York, 1962, p. 21.
 ⁴ C. R. Kinney, E. W. Smith, B. L. Walley, and A. R. Willey, J. Amer. Chem. Soc., 1933, 55, 3418.